

Modelling Ecosystem Services:

Opportunities emerging from Wales

Dr Katie Medcalf Cenv Environment Director

- What is an ecosystems approach?
- Why do we need a new approach to environmental management?
- What is the current situation?
- How do we bring different data together and demonstrate solutions?
- How can we use this approach? \bullet

What is an ecosystems approach?

Sustainable Land Use

Conservation of Biodiversity

Diagram: Millennium Ecosystem Assessment, 2005.

Environment S Y S T E M SIntegrated land management and ecosystem services?

Integrated land management defines an all encompassing holistic approach

© Ian Medcalf

Ecosystem services define the multiple provisions from the land

Cross sector collaboration is an underpinning factor in delivering an integrated and sustainable approach to managing our environment.

This collaboration is making headway through the:

1.Implementation of new approaches,

2.Opportunities to combine and share knowledge between skill bases,

3. High capacity computing available to analyse the huge complexities of data.

Scale of analysis and ecosystem services

- Scale of analysis and management action should be determined by the problem being addressed.
- Implementing the approach is dependent on scale - local, regional and national.
- Need to look within and across ecosystems to understand how scales(temporal/spatial) relate to service provision.

Exploratory approach which looked at:

Readily available data

Formulating a method

Data used and Rule	bese								
Deployer	Category and code		inpotance Score		Processing		Mosaic Vegetation	Registry	WP
1. SaliGroup	Ninetal Sola	Universed Day Sala Typicalisano	22 381	L	1	100			
Organic and (Mineral Solis		Typical anglic pices is Typical anglic pices is Typical power surface	री सहस	1	1	100	- 22		
		Samogleychowneafte	5.0	1	1	10			
		Sey, bowneate Tocalbowneate	5.43	1	1	100	-		
		Typicalbown alkvalistils	AI 581	1	1	100			
		Typical agailic brown Hantis	AU\$21	1	1	100			

Practicalities of mapping

Analysing and interpreting data

 Overview maps aid the identification and visualisation of ecosystem services

Managing our land and seas – is it a matter of societal choice?

"Ecosystems should be managed for their intrinsic value and for the tangible and intangible benefits people receive, but in a fair and equitable way (CBD, 2004)"

- -**Participatory Approach** actions need to be determined through negotiations and trade-offs amongst stakeholders and communities.
- -As human society is diverse, everyone emphasises their own economic, cultural and societal interests and needs.
- -Societal groups are placed in different environmental contexts. This determines the relationship they have with their surrounding natural world.

Where are Welsh societal needs pushing ecosystem limits?

"A key challenge of ecosystem management is identifying how to manage multiple ecosystem services across the landscape" (Raudsepp-Hearne et al., 2009).

How do we bundle interaction information together to give us integrated knowledge?

Focusing on Conservation of Biodiversity

How do ecosystem services provide an environmental benefit to society?

Network of habitats depend:

- •Highly on biodiversity resources
- •Highly on biodiversity opportunities
- •Positively related to vegetation carbon , soil carbon and landscape aesthetics
- •Negatively related to agriculture intensity and livestock density

Sustainable land management depend: • Highly on water regulation

•Positively related to soil carbon and recreation

•Negatively related to agriculture intensity and livestock density

Moderately related to fibre

Genetically viable populations depend :

- Highly on biodiversity resources
 Positively related to vegetation carbon and socially valued landscapes
- •Negatively related to agriculture intensity and livestock density

How do ecosystem services layers bundle together?

How do these interactions look on the ground?

Mapping the bundles and tradeoffs to give local situation

Where would be the best place to develop further industrial capacity?

How do we bundle interaction information together to give us integrated knowledge?

Identify your natural resources

Use of Habitat Inventories and data modelling

Identifying ecosystem resource opportunities

Integrated ecosystem services approach

Use existing knowledge to understand humanecosystem interactions

Add new knowledge

Use the ecosystem approach to help us work together more effectively

© Nigel Brown

© David Medcalf

© Nigel Brown

© ES Wales

© Rob Purvis

Thank you for listening

© John Lucas

Nigel Chadwick

© Andrew Curtis